Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
Processes ; 10(12):2575, 2022.
Article in English | MDPI | ID: covidwho-2143468

ABSTRACT

The COVID-19 period has had a significant impact on both the global environment and daily living. The COVID-19 lockdown may provide an opportunity to enhance environmental quality. This study has evaluated the effect of the COVID-19 lockdown on the distribution of polycyclic aromatic hydrocarbons (PAHs) in the street dust (diameter < 20 µm) of different land use areas in Dhaka city, Bangladesh, using gas chromatography-mass spectrometry (GC-MS). The maximum (2114 ng g-1) concentration of ∑16 PAHs was found in the industrial area during without lockdown conditions and the minimum (932 ng g-1) concentration was found in the public facilities area during the complete lockdown. Meanwhile, due to the partial lockdown, a maximum of 30% of the ∑16 PAH concentration decreased from the situation of without lockdown in the industrial area. The highest result of 53% of the ∑16 PAH concentration decreased from the situation without lockdown to the complete lockdown in the commercial area. The 4-ring PAHs had the highest contribution, both during and after the lockdown conditions. PAH ratios, correlation, principal component analysis (PCA), and hierarchical clustering analysis (HCA) were applied in order to evaluate the possible sources. Two major origins of PAHs in the street dust were identified as petroleum and petrogenic sources, as well as biomass and coal combustion. Ingestion and dermal pathways were identified as the major exposure routes to PAHs in the dust. The total incremental lifetime cancer risk (ILCR) due to exposure for adults and children ranged from 8.38 ×10-8 to 1.16 ×10-7 and from 5.11 ×10-8 to 1.70 ×10-7, respectively. These values were lower than the baseline value of acceptable risk (10-6), indicating no potential carcinogenic risk. This study found that the COVID-19 lockdown reduced the distribution of PAHs in the different sites of Dhaka city, thus providing a unique opportunity for the remarkable improvement of degraded environmental resources.

2.
Environ Anal Health Toxicol ; 36(2): e2021010-0, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1271038

ABSTRACT

The coronavirus disease of 2019 (COVID-19) has become a global pandemic with rapid rate of transmission and fatalities worldwide. Scientists have been investigating a host of drugs that may be rechanneled to fight this malaise. Thus, in this current computational study we carried out molecular docking experiments to assess the bridging potentials of some commercial drugs such as chloroquine, hydroxychloroquine, lopinavir, ritonavir, nafamostat, camostat, famotidine, umifenovir, nitazoxanide, ivermectin, and fluvoxamine at the interface between human ACE2 and the coronavirus spike glycoprotein complex. This is aimed at ascertaining the ability of these drugs to bridge and prevent the complexing of these two proteins. The crystal structure of human ACE2 and the coronavirus spike glycoprotein complex was retrieved from protein database, while the selected drugs were retrieved from PubChem data base. The proteins and drugs were prepared for docking using Cresset Flare software. The docking was completed via AutoDock Vina module in Python Prescription software. The best hit drugs with each receptor were selected and their molecular interactions were analyzed using BIOVIA's Discovery Studio 2020. The best hit compounds on the human ACE2 were the lopinavir (-10.1 kcal/mol), ritonavir (-8.9 kcal/mol), and nafamostat (-8.7 kcal/mol). Ivermectin, nafamostat, and camostat with binding energy values -9.0 kcal/mol, -7.8 kcal/mol, and -7.4 kcal/mol respectively were the hit drugs on the coronavirus spike glycoprotein. Nafamostat showed a dual bridging potential against ACE2 and spike glycoprotein, and could therefore be a promising lead compound in the prevention and control of this disease.

3.
Jurnal Teknologi Laboratorium ; 9(1):67-77, 2020.
Article in English | Indonesian Research | ID: covidwho-1235319

ABSTRACT

This review chronicles the indirect transmission method which seems to be overlooked by most people and makes attempts to document the various transmission ways with a hope that such information may strengthen the knowledge base of researchers towards methods of eradicating the pandemic. Current knowledge of transmission and exposure of SARS-CoV-2 has been explained. Various researchers have put forward different ways of exposure and transmission. Literature does not reveal whether the indirect transmission route is the dominant one. However, total lockdown could be a veritable means to reduce both direct and indirect transmission routes. In many countries where the indirect transmission has been reduced, the scourge of the virus is less. The work creates awareness on the need to watch out for those routes of transmissions that may not be popular and suggested vital knowledge gaps that need to fill.

4.
Trends in Environmental Analytical Chemistry ; : e00107, 2020.
Article in English | ScienceDirect | ID: covidwho-894234

ABSTRACT

Air pollutants are perhaps the largest cause of diseases and death in the world today. Increasing urbanization and industrialization have caused an increase in number of diverse forms and types of new pollutants, which are difficult to detect and characterize due to their stench behaviour and complex sources of production. Such pollutants have been called emerging pollutants (EPs) and their list is ever increasing. Therefore, the understanding of the method of analysis and health implication of (EPs) in air is critical to providing a more robust understanding of exposure routes, regulations and mitigation. EPs in air discussed in this study are not in any way exhaustive but limited to emerging VOCs (including acrylonitrile, 1−3-butadiene, chloroform, dichloromethane, ethylene oxides, formaldehyde, toluene, trichloroethylene, 1,4-Dioxane) and metals (arsenic, manganese, and vanadium), ultrafine particles, micro- and nano- plastics, engineered nanoparticles, diesel/black carbon and bioaerosols. Occurrence, detection and health implications of these EPs in air are still unfolding due to limited monitoring studies, lack of standard methodology and regulations. To address this knowledge gap, authors conducted an in-depth review of available information. Their spatial distribution, analytical methods and health implications are discussed including the novel coronavirus (COVID-19) as a potential EP in air. The study concluded with highlights of gaps in knowledge and suggestions to key areas for future research. This information is of general interest to environmental scientists and of specific interest to both health and sanitation workers and policymakers at private, government and international organizations.

SELECTION OF CITATIONS
SEARCH DETAIL